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Quantum Conservative Gates
for Finite-Valued Logics

Gianpiero Cattaneo, Alberto Leporati, and Roberto Leporini

We introduce some conservative gates for finite-valued logics which are able to realize
all the main connectives of the many-valued logics of L� ukasiewicz, the MV-algebras of
Chang and Brower–Zadeh algebras. After a brief exposition of the motivations for this
work, the gates are defined and their properties are explored. Finally, a possible quantum
realization of them is proposed, using three techniques: a “brute force” method—an
extension of the Conditional Quantum Control argument, and a new technique which
we call the Constants Method. For all these techniques, the unitary operator which
describes the gate is a sum of local operators.
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1. INTRODUCTION

Conservative logic is a mathematical model of computation introduced by
Fredkin and Toffoli (1982), that allows one to perform universal computations
with zero internal power dissipation. This goal is reached by basing the model on
reversible and conservative primitives which reflect physical principles such as the
reversibility of micro-dynamical laws and the conservation of certain quantities,
such as the energy of the physical system used to perform the computations.
Conservative logic is based on the Fredkin gate, a universal three-inputs/three-
outputs gate which is both conservative and reversible. As a matter of fact this gate
was introduced by Petri some years before Fredkin in Petri (1967), and thus in the
sequel we will call it the Petri–Fredkin gate.

On the other hand, many-valued logics and modal logics are extensions of
the classical Boolean logic which have known a great diffusion due to their abil-
ity to manage incomplete and/or uncertain knowledge. Different approaches to
many-valued and modal logics have been considered in literature (for instance,
see Rescher (1969); Rosser-Turquette (1952)).

In Cattaneo et al. (2000a) conservative logic as been extended to include the
main features of many-valued logics with a finite number of truth values. The first
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result was the definition of some generalizations of the Petri–Fredkin gate for finite-
valued reversible and conservative logics (notably finite-valued L� ukasiewicz and
finite-valued Gödel logics) which have the properties required by the conservative
and many-valued paradigms. In particular, we introduced three gates for three-
valued logics and three possible extensions of such gates for d-valued logics; two
of them allow one to obtain all the main connectives of the L� ukasiewicz logics as
well as the Gödel implication, while the other was specifically designed to realize
the operators which are typically found in MV-algebras and some modal logics. In
Cattaneo et al. (2000b) we presented the quantum realization of the above gates
using three techniques: a “brute force” method, in which the gates are expressed as
sum of local operators, each one corresponding to a single row of the truth table, an
extension of the Conditional Quantum Control technique originally introduced by
Barenco, Deutsch, Ekert and Jozsa in Barenco et al. (1995), and a new technique
which we have called the Constants Method.

One of the results exposed in Cattaneo et al. (2000a) is the following: if the
number of truth values is greater than or equal to the number of input/output lines
of the considered conservative gates, then it is not possible to realize the FAN-OUT
(i.e., classical cloning) operator with such gates. Since FAN-OUT is a fundamental
operator in reversible computing, we had two possible choices: to weaken the
notion of conservativeness, or to use gates with a number of input/output lines
greater than the number of truth values considered. In Cattaneo et al. (2000a) we
followed the first way and we introduced the notion of weak conservativeness,
with an associated physical interpretation. In this paper we partially follow the
second line, and we present a conservative (in the sense of Fredkin and Toffoli
(1982)) four-inputs/four-outputs gate (named CON3) for three-valued logics that
realize all the desired logical connectives as well as the FAN-OUT operator.

Another result of Cattaneo et al. (2000a) is that there is no weakly conserva-
tive and reversible three-inputs/three-outputs gate for d-valued logics that extends
the Petri–Fredkin gate and realizes in its configurations all the desired connectives.
Here we show that it is possible to overcome this problem by considering four-
inputs/four-outputs gates: we define the gate wCONd , and we show that different
configurations of such gate realize not only all the logical connectives considered
in Cattaneo et al. (2000a) but also the Goguen implication, although in a smaller
set of truth values. Of course, for what we have said above, the gate wCONd cannot
be conservative in the sense of Fredkin and Toffoli (1982); however, it is weakly
conservative.

Finally, we show that if we do not require that our gates be based upon
the Petri–Fredkin gate then we can realize all the desired connectives as well as
the FAN-OUT operator with three-inputs/three-outputs self-reversible and weakly
conservative gates. We define one of such gates for Boolean logic and then we
generalize it to d-valued logics. The gate ALNd thus obtained allows one to realize
all the operators implemented by wCONd but the Goguen implication and the MV-
algebras truncated sum.
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This paper is organized as follows. In Section 2 we recall from Cattaneo et al.
(2000a) some notions of conservative and many-valued logics, to set up the envi-
ronment and the notation for our results. In Section 3 we define our new gates, and
we discuss their properties. In Section 4 we give some examples of possible realiza-
tions of our gates in the paradigm of quantum computing, using the three techniques
exposed in Cattaneo et al. (2000a,b): the “brute force” method, an extension of
the Conditional Quantum Dynamics argument originally introduced by Barenco,
Deutsch, Ekert and Jozsa in Barenco et al. (1995), and a new technique which we
have called the Constants Method. Finally, in Section 5 we give the conclusions.

2. PRELIMINARIES

We assume that the reader is already familiar with the notions concerning
conservative logic and many-valued logics. An extended introduction to these
subjects can be found in Cattaneo et al. (2000a); here we just recall some notations
needed in the following.

2.1. Some Connectives for Many-Valued Logics

In this paper we will deal only with a finite number of truth values; more
precisely we will consider, for every integer d ≥ 2, the set Ld = {0, 1

d−1 , 2
d−1 , . . . ,

d−2
d−1 , 1} of truth values. As usually found in literature, we will use Ld both as a set
of truth values and as a numerical set equipped with the standard order relation on
rational numbers. The values 0 and 1 denote respectively falsity and truth, whereas
the other values of Ld indicate different degrees of indefiniteness.

For d-valued L� ukasiewicz logics the following two connectives are assumed
as primitives (see L� ukasiewicz (1920), and also Rescher (1969), Rosser and
Turquette (1952)):

x →L y := min{1, 1 − x + y} (L� ukasiewicz implication)

¬x := 1 − x (diametrical negation)

Note that, if the use of the constant value 0 is allowed, we can obtain the diamet-
rical negation as ¬x = x →L 0. Using these primitives it is possible to define the
following connectives, which are usually found in d-valued L� ukasiewicz logics:

x ∨ y := (x →L y) →L y (L� ukasiewicz disjunction)

x ∧ y := ¬(¬x ∨ ¬y) (L� ukasiewicz conjunction)

x ↔L y := (x →L y) ∧ (y →L x) (L� ukasiewicz equivalence)

From these definitions it is easy to see that x ∨ y = max{x , y} and x ∧ y =
min{x , y} with respect to the standard ordering of Ld . One important feature of all
many-valued connectives now presented is that they coincide with the analogous
Boolean connectives when only 0 and 1 are involved.
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Following Chang (1958, 1959), the L� ukasiewicz approach to many-valued
logics can be equivalently recovered on the basis of the pair of connectives {⊕, ¬},
where

x ⊕ y := min{1, x + y}
Indeed, it can be trivially verified that x →L y = ¬x ⊕ y and x ⊕ y = ¬x →L y.
In this Chang context one can consider another interesting derived connective
defined by the rule x � y := ¬(¬x ⊕ ¬y) and explicitly written as:

x � y := max{0, x + y − 1}
In this paper we also consider two modal connectives, possibility (♦) and

necessity (�), which are formally defined as follows:

♦x :=
{

0 if x = 0

1 if x �= 0
(possibility)

�x :=
{

0 if x �= 1

1 if x = 1
(necessity)

Besides the diametrical negation (¬), two other negation connectives can
be considered: the intuitionistic negation (also called impossibility (∼)) and the
anti-intuitionistic negation (also called contingency (�)), whose definitions are:

∼ x := ¬♦x =
{

1 if x = 0

0 if x �= 0
(intuitionistic negation)

�x := ¬�x =
{

1 if x �= 1

0 if x = 1
(anti-intuitionistic negation)

Among the different types of implication connectives one can find in liter-
ature, in this paper we consider (apart from L� ukasiewicz implication) the Gödel
implication →G and the Goguen implication →� (residue of product conjunction)
defined as follows:

x →G y :=
{

y if y < x

1 otherwise
(Gödel implication)

x →� y :=



y

x
if x , y ∈ GLp and y < x

1 if x , y ∈ GLp and x ≤ y
(Goguen implication)

where GLp = {0} ∪ { 1
2i | i ∈ Z and 0 ≤ i ≤ p − 2}. Notice that the Goguen im-

plication requires truth values which are implemented as non-equispaced rational
numbers. If we let d = 2p−2 + 1 then all the numbers of GLp are also elements
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of the set Ld . This means that we can look at →� as a binary map which is not
closed on Ld but is closed on its subset GLp. In other words, we can use a specially
designed d-valued gate to compute the Goguen implication for a p-valued logic.
Of course this trick has nothing to do with the interpretation of the numbers of Ld

and GLp as truth values: they are different sets of truth values that happen to be
implemented with the same numbers. For d ≥ 2, in general it holds GLp ⊂ Ld ;
we have Ld = GLp only for d = p = 3 and for d = p = 2, in which cases we can
think that also the logical truth values coincide.

Observe that if the use of the constant value 0 is allowed then we can get
the intuitionistic negation as ∼ x = x →G 0. Analogously, for x ∈ GLp it holds
∼ x = x →� 0. Moreover, when d = p = 2 the three implications →L , →G and
→� collapse to the classical implication, whereas for p = d = 3 the non classical
implications →G and →� coincide.

2.2. Computational Paradigms of Reversible and Conservative Logic

According to Fredkin and Toffoli (1982), conservativeness is usually modeled
by the property that the output values of the involved gates are always a permutation
of the values given in the input. We call this condition strict conservativeness. Let us
stress that this does not mean that input and output lines are permanently connected
by a fixed pattern; roughly speaking, it is as if the line connections depend on the
values given in the input.

On the other hand, reversibility is modeled as the fact that the gate computes
an invertible mapping. Let us note that conservativeness and reversibility are two
independent notions: a gate can satisfy both properties, only one of them, or none.
For example, a conservative Boolean gate may map two different input config-
urations (e.g., (101) and (011)) to the same permuted output configuration (e.g.,
(110)); on the other hand, a famous example of reversible but non conservative
Boolean gate is the Controlled–Controlled–NOT gate, also known as the Toffoli
gate, whose behavior is defined by the following map CCNOT : {0, 1}3 → {0, 1}3:

y1 = x1

y2 = (x1 ∧ x3) ⊕ x2

y3 = x3

(2.1)

Just as the Fredkin gate, the Toffoli gate was first presented by Petri in Petri (1967),
and thus in the sequel we will call it the Petri–Toffoli gate.

Since every reversible circuit computes a bijective mapping between input
and output patterns, and every conservative circuit performs a permutation of
each input pattern, it follows that they must necessarily have the same number of
input and output lines. In this paper we are mainly interested into gates which are
both conservative and reversible, such as the Petri–Fredkin gate that computes the
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following map FG : {0, 1}3 → {0, 1}3:

y1 = x1

y2 = (x1 ∧ x2) ∨ (¬x1 ∧ x3)
y3 = (¬x1 ∧ x2) ∨ (x1 ∧ x3)

In particular, the Petri–Fredkin gate is self-reversible, i.e., FG is the inverse of
itself with respect to map composition. This means that FG is a bijection on the set
{0, 1}3 that can be expressed as the composition of fixed points and disjoint cycles
of length two. Self-reversibility is a particularly desirable feature in constructing
a quantum circuit (Fredkin and Toffoli (1982), p. 247). Note that self-reversibility
implies the reversibility property while the converse is not generally true.

The extension of conservativeness and reversibility to d-valued logics is im-
mediate: a map f : Ln

d → Lm
d is reversible if and only if it is a bijection. This im-

plies n = m, so that also reversible d-valued circuits must have the same number
of input and output lines. On the other hand, a map f : Ln

d → Lm
d is conservative

if and only if for each possible choice of x ∈ Ln
d , the m-tuple y = f (x) is a per-

mutation of the n-tuple x . Once again, this implies that n = m. As in the Boolean
case, conservativeness and reversibility are two independent notions.

A well-known technique to transform irreversible gates into reversible
ones consists in adding some input and output lines in order to store the infor-
mation that, given some output value, allow one to recover the input that generated
it. Thus, for example, the AND gate is not reversible, but we can reversibly com-
pute the AND connective through the Petri–Fredkin gate. This technique allows
one to give universal sets of reversible gates for Boolean logic starting from uni-
versal sets of Boolean gates and transforming the irreversible gates into reversible
ones. A similar idea can be used to make a gate conservative, as we show for
the (universal and self-reversible) non conservative Petri–Toffoli gate, defined by
Equations (2.1). Let us consider a five-inputs/five-outputs gate, described by the
following equations:

∀ x ∈ {0, 1}5 T (x) :=




(0, 0, 1, 1, 1) if x = (1, 0, 1, 0, 1)

(1, 0, 1, 0, 1) if x = (0, 0, 1, 1, 1)

(1, 1, 1, 0, 1) if x = (1, 0, 1, 1, 1)

(1, 0, 1, 1, 1) if x = (1, 1, 1, 0, 1)

(x1, x2, x3, x4, x5) otherwise

As we can see, by fixing x1 = 1 and x2 = 0 in the input, and ignoring the cor-
responding output lines y1 and y2, this gate realizes the Petri–Toffoli gate on the
last three input and output lines. The proposed gate is conservative, since for each
input pattern x the corresponding output pattern y = T (x) is a permutation of x .

From now on, a d-valued n-inputs/n-outputs gate will be called an (n, d)-gate
for short.
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A very important gate in reversible computing is the FAN-OUT : Ld → L2
d ,

defined by the law FAN–OUT(x) = (x , x). In other words, the FAN-OUT operator
simply clones the input value. When dealing with classical circuits, the FAN-OUT
operator is implemented by sticking two output wires to an existing input wire; on
the other hand, when we deal with quantum circuits we have to take into account
the so-called no cloning theorem Woot and Zurek (1982), which states that there
is no unitary operator that duplicates any possible quantum state. However, this
is not a problem for our purposes, since our aim is to give a quantum simulation
of classical gates. This means that we need to duplicate only those states which
correspond to classical (d-valued) truth values, and not each possible quantum state
such as, for example, superpositions of vectors from the canonical orthonormal
basis, where each vector represents a classical truth value. From a classical point
of view, it is easy to see that the FAN-OUT operator cannot be realized by a two-
inputs/two-outputs conservative gate, even when working with Boolean values.
On the contrary, the Controlled–NOT gate, defined as

y1 = x1

y2 = x1 ⊕ x2

is a reversible two-inputs/two-outputs gate that realizes the FAN-OUT operator
when the input x2 is fixed to 0.

In this paper we are interested in the design of universal gates which are able
to implement the FAN-OUT operator together with as many connectives from d-
valued logics as possible. However, in Cattaneo et al. (2000a) we have shown that
if d ≥ 3 then there is no strictly conservative (3, d)-gate which is able to realize
in its configurations the FAN-OUT operator. As a consequence, in Cattaneo et al.
(2000a) we proposed the notion of weak conservativeness: that is, we required that
the sum of the output values be always equal to the sum of the input values. We
showed also that, from a physical point of view, this property is equivalent to the
requirement that the energy needed to build the pattern of input values is equal
to the energy that would be required to build the output pattern “from scratch,”
that is directly without using any gate. A trivial observation is that strict and weak
conservativeness coincide in the Boolean case.

Using this new notion of conservativeness, in Cattaneo et al. (2000a) we
have defined three (3, 3)-gates and three (3, d)-gates which are self-reversible and
weakly conservative. A notable property of such gates is that they are functionally
complete: from different configurations of the gates (that is, by fixing some of their
input lines with constant values and considering some output lines as garbage) we
can obtain a set of connectives that, equipped with some logical constants from Ld ,
are able to realize any mapping from Ln

d to Ld . The need for the logical constants is
given by the well-known fact that L� ukasiewicz and Gödel logics without constants
are incomplete Rosser and Turquette (1952): for example, they cannot express the
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mapping which is identically equal to 1
d−1 Cattaneo et al. (2000a). Notice that

our notion of universality has nothing to do with the ones considered in quantum
computing, where universality means that the gates can be used to realize any
unitary operator under some suitable approximation.

Two further properties which we have taken into account in Cattaneo et al.
(2000a) when designing our gates are 0-regularity and 1-regularity, both of them
satisfied by the Petri–Fredkin gate. Formally, let G : L3

d → L3
d be the map com-

puted by a (3, d)-gate. We say that the gate is 0-regular if and only if G(0, x2, x3) =
(0, x3, x2) for every possible choice of x2, x3 in Ld ; on the other hand, we say that
the gate is 1-regular if and only if G(1, x2, x3) = (1, x2, x3) for every possible
choice of x2, x3 in Ld . These two properties suggested us to adopt the Conditional
Quantum Control of Barenco et al. (1995) as a technique to describe the quantum
versions of our gates Cattaneo et al. (2000b), by looking at the first input line as a
control line. In this paper we propose two extensions of these notions in order to
use them with (n, d)-gates.

In the first extension, we say that an (n, d)-gate is 0-regular if and only if it
is possible to fix n − 2 input lines to the Boolean value 0 so that the remaining
two input values are exchanged. Analogously, we say that the gate is 1-regular if
and only if it is possible to fix n − 2 input lines to 1 so that the remaining two
input values are copied unaltered. A further requirement is that the n − 2 values
fixed to 0 and to 1 (for 0 and 1-regularity, respectively) are returned unchanged
onto the corresponding output lines. On the other hand, we do not require that the
n − 2 lines fixed to obtain 0-regularity be the same fixed to obtain 1-regularity.
Gate CON3 defined in the next section satisfies these notions of 0 and 1-regularity.

A second possible extension is the following: an (n, d)-gate is 0-regular (re-
spectively, 1-regular) if and only if, once fixed suitable n − 3 input lines with
Boolean values, these are copied unchanged and there exists one of the remaining
three lines that, when fixed to 0 (respectively, 1), produces in output the value 0
(respectively, 1) and causes the (non necessarily Boolean) values of the other two
input lines to be exchanged (respectively, copied unaltered). A further requirement
is that if the gate is both 0 and 1-regular, then the n − 3 fixed input lines, as well
as the Boolean pattern used to fix them, must be the same; moreover, it is required
that also the remaining input (control) line fixed either to 0 or to 1 (in order to
exchange or to copy the values given in the last two input lines, respectively) must
be the same. The gate wCONd defined in the next section satisfies these notions
of 0 and 1-regularity.

The next list summarizes the fundamental properties we would like to preserve
when looking for extensions of the Petri–Fredkin gate to d-valued logics:

(F-1) it is a (3, d)-gate;
(F-2) it is reversible;
(F-2′) it is self-reversible;
(F-3) it is weakly conservative;
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(F-3′) it is strictly conservative;
(F-4) it is a basic gate, that is, from the configurations of the gate all the logical

connectives of Section 2.1. are obtained, included the FAN-OUT;
(F-5) it is 0-regular;
(F-6) it is 1-regular;
(F-7) at least one of the inputs is copied unaltered to the corresponding output

line (useful for the quantum implementation with the Conditional Quantum
Control technique);

(F-8) the restriction of the gate to Boolean input triples is just the Petri–Fredkin
gate.

Just as we have done for 0-regularity and 1-regularity, we can extend property (F-8)
by requiring that a given (n, d)-gate, when fixed n − 3 of its input lines with (non
necessarily Boolean) constant values, behaves as the Petri–Fredkin gate when the
remaining input lines are feeded with Boolean values.

3. CONSERVATIVE GATES

3.1. Finite-Valued Extensions of the Petri–Fredkin Gate

As stated in the introduction, in Cattaneo et al. (2000a) we proved the fol-
lowing proposition.

Proposition 3.1. For d ≥ 3, there is no (3,d)-gate satisfying properties (F-2),
(F-3) and (F-8) which is able to realize the L� ukasiewicz connectives (∧, ∨, →L),
the Gödel implication (→G) and the MV-connectives (⊕, �).

As a consequence, if we want to build a single gate which satisfies properties
(F-2)–(F-8) and seizes all the above connectives we have to look for an (n, d)-gate
with n ≥ 4.

The first gate we propose is the (4, 3)-gate CON3, whose truth table is given
in Table I. As we can see, CON3 is self-reversible (and thus reversible) and strictly
conservative. Table II shows the configurations of the gate that allow one to ob-
tain all the required connectives of three-valued logics. Since the number of in-
put/output lines is greater than the number of the involved truth values, we can
realize the FAN-OUT without sacrificing strict conservativeness. Moreover, we ob-
serve that it holds CON3(0, 0, x3, x4) = (0, 0, x4, x3) for every possible choice of
x3, x4 in L3, and CON3(x1, x2, 1, 1) = (x1, x2, 1, 1) for every possible choice of
x1, x2 in L3; thus, the gate is both 0-regular and 1-regular with respect to the ex-
tended definition of such properties. As for property (F-7), it suffices to observe that
the value on the first input line is always copied to the first output line, producing
in this way a gate which is conditionally controlled by the first line. Finally, if we
fix x1 = 1 and we ignore the output line y1 then the resulting (3, 3)-gate behaves
as the Petri–Fredkin gate when feeded with Boolean input triples; this means that
the gate satisfies also the extended definition of property (F-8).
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Table II. The Operators Realized by the Gate CON3

Connective Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 1
2 , x3 = 0, x4 = 1 y1, y4 y2, y3

Pr1 x3, x4 x1 = 0, x2 = 0 y4 y1, y2, y3

Pr2 x3, x4 x1 = 0, x2 = 0 y3 y1, y2, y4

→L x2, x4 x1 = 1
2 , x3 = 1 y3 y1, y2, y4

→G x3, x2 x1 = 1
2 , x4 = 1 y2 y1, y3, y4

→� x3, x2 x1 = 1
2 , x4 = 1 y2 y1, y3, y4

∨ x3, x4 x1 = 1
2 , x2 = 1 y2 y1, y3, y4

∧ x1, x4 x2 = 1
2 , x3 = 0 y4 y1, y2, y3

⊕ x1, x4 x2 = 1
2 , x3 = 1 y3 y1, y2, y4

� x2, x4 x1 = 1, x3 = 0 y3 y1, y2, y4

I x4 x1 = 0, x2 = 0, x3 = 0 y3 y1, y2, y4

¬ x2 x1 = 1
2 , x3 = 1, x4 = 0 y3 y1, y2, y4

∼ x3 x1 = 1
2 , x2 = 0, x4 = 1 y2 y1, y3, y4

� x4 x1 = 1
2 , x2 = 1, x3 = 0 y4 y1, y2, y3

♦ x2 x1 = 0, x3 = 0, x4 = 1 y2 y1, y3, y4

� x2 x1 = 0, x3 = 0, x4 = 1 y4 y1, y2, y3

The second extension of the Petri–Fredkin gate we propose is the (4, d)-gate
wCONd , defined as follows:
∀ x ∈ L4

d

wCONd (x) :=




(0, x2, x2 + x3, 1 − x2) if x1 = 0, x2 > 0, x4 = 1 and x2 + x3 < 1

(0, x2, x3 − x2, 1) if x1 = 0, 0 < x2 ≤ x3 < 1 and x4 = 1 − x2

(0, x2, 1, x3) if x1 = 0, x4 = 1, x3 < 1 and x2 + x3 ≥ 1

(0, x2, x4, 1) if x1 = 0, x3 = 1, x4 < 1 and x2 + x4 ≥ 1

(0, x2, x2 + x4 − 1, 1 − x2) if x1 = 0, x3 = 0, x4 < 1 and x2 + x4 > 1

(0, x2, 0, x3 + x4) if x1 = 0, 0 < x3 < x2 and x4 = 1 − x2(
1

2
, x2,

x4

x2
, 1 + x4 − x4

x2

)
if x1 = 1

2
, x2, x4 ∈ GLp , x4 < x2 and x3 = 1(

1

2
, x2, 1, x2x3

)
if x1 = 1

2
, x2, x2x3 ∈ GLp , x2 > 0, x3 < 1

and x3 + x4 − 1 = x2x3

(1, 0, x4, x3) if x1 = 1, x2 = 0 and x3 �= x4

(1, x2, x4, 1) if x1 = 1, 0 < x2 ≤ x4 < 1 and x3 = 1

(1, x2, 1, x3) if x1 = 1, 0 < x2 ≤ x3 < 1 and x4 = 1

(1, x2, x2, 1 − x2 + x4) if x1 = 1, x4 < x2 < 1 and x3 = 1

(1, x2, 1, x4 + x2 − 1) if x1 = 1, x2 < 1, x3 = x2, x4 + x2 ≥ 1
and x4 < 1

(1, x2, x2, x3 − x2) if x1 = 1, 0 < x2 < x3 < 1 and x4 = 0

(1, x2, x4 + x2, 0) if x1 = 1, 0 < x2, x3 = x2, x4 + x2 < 1
and x4 > 0

(x1, x2, x3, x4) otherwise
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Table III. The Operators Realized by the Gate wCONd

Connective Inputs Constants Outputs Garbage

FAN-OUT x2 x1 = 1, x3 = 1, x4 = 0 y2, y3 y1, y4

Pr1 x3, x4 x1 = 1, x2 = 1 y3 y1, y2, y4

Pr2 x3, x4 x1 = 1, x2 = 1 y4 y1, y2, y3

→L x2, x4 x1 = 1, x3 = 1 y4 y1, y2, y3

→G x2, x3 x1 = 1, x4 = 1 y3 y1, y2, y4

→� x2, x4 x1 = 1
2 , x3 = 1 y3 y1, y2, y4

∨ x2, x4 x1 = 1, x3 = 1 y3 y1, y2, y4

∧ x2, x3 x1 = 1, x4 = 0 y3 y1, y2, y4

⊕ x2, x3 x1 = 0, x4 = 1 y3 y1, y2, y4

� x2, x4 x1 = 0, x3 = 0 y3 y1, y2, y4

I x4 x1 = 1, x2 = 1, x3 = 0 y4 y1, y2, y3

¬ x2 x1 = 1, x3 = 1, x4 = 0 y4 y1, y2, y3

∼ x2 x1 = 1, x3 = 0, x4 = 1 y3 y1, y2, y4

� x2 x1 = 0, x3 = 1, x4 = 0 y3 y1, y2, y4

♦ x2 x1 = 1, x3 = 0, x4 = 1 y4 y1, y2, y3

� x2 x1 = 0, x3 = 1, x4 = 0 y4 y1, y2, y3

Table III reports the connectives realized by wCONd . As stated above, since
wCONd realizes the FAN-OUT operator, for d ≥ 4 it cannot be strictly conserva-
tive; however, it is easily verified that it is weakly conservative and self-reversible.
The gate wCONd satisfies the property (F-4), as we can see from the set of the
connectives which are realized. As for properties (F-5)–(F-6) we observe that
wCONd (1, 0, x3, x4) = (1, 0, x4, x3) and wCONd (1, 1, x3, x4) = (1, 1, x3, x4) for
every possible choice of x3, x4 in Ld . Moreover, the first two inputs are always
copied to the first two outputs, thus satisfying the property (F-7). Finally, if we fix
x1 = 1 and we ignore the first output line then the resulting (3, d)-gate behaves as
the Petri–Fredkin gate when fed with Boolean input triples.

3.2. An Alternative to the Petri–Fredkin Gate

As we have seen, Proposition 3.1 states that we cannot realize both the con-
nectives of L� ukasiewicz many-valued logics and of Chang’s MV-algebras with
the same (3, d)-gate, if we require that such gate is a d-valued extension of
the Petri–Fredkin gate. However, if we disregard the properties (F-4)–(F-8) we
can easily build a (3, 2)-gate whose d-valued extension allows one to realize
all the desired connectives. The truth table of this (3, 2)-gate is the following:

x1 x2 x3 �→ y1 y2 y3 x1 x2 x3 �→ y1 y2 y3

0 0 0 0 0 0 1 0 0 0 0 1
0 0 1 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 1 0 1 1 0
0 1 1 1 0 1 1 1 1 1 1 1
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Fig. 1. A self-reversible and conservative (3, 2)-gate. Note that in the gate on the right
x1 ∧ ¬x2 = ¬(x1 → x2).

The behavior of the gate in the two cases x3 = 0 and x3 = 1 is depicted in
Figure 1. Since this gate is both strictly conservative and self-reversible, it is a
valid alternative to the Petri–Fredkin gate upon which to base conservative logic.

Looking for a d-valued extension of this gate, we have chosen to minimize
the number of triples for which the gate behaves differently from the identity gate,
with the constraint that it realizes all the desired connectives from d-valued logics.
As it will be explained in the following, this is a fundamental step of our Constants
Method, that in some cases allows one to give particularly short formulas for the
unitary operator corresponding to a quantum realization of the gate. This process
led us to the following analytic expression of ALNd : L3

d → L3
d :

∀ x ∈ L3
d

ALNd (x) :=




(1 − x1 + x2, x1, x1) if x2 ≤ x1, x2 < 1 and x3 = 1

(x2, x1 + x2 − 1, 1) if 1 ≤ x1 + x2 < 2 and x2 = x3

(1, x1, x2) if x1 < x2 < 1 and x3 = 1

(x2, x3, 1) if x1 = 1 and x2 < x3 < 1

(x3 − x2, x2, x2) if x1 = 0 and x2 < x3 < 1

(0, x2, x1 + x2) if x1 > 0, x1 + x2 < 1 and x2 = x3

(1 − x1, x1 + x3 − 1, x1) if x1 < 1, x1 + x3 > 1, x2 = 0
and x3 < 1

(x3, 0, x1 + x2) if x1 = 1 − x3 and 0 < x2 < x3 < 1

(x1, x2, x3) otherwise

As one can easily verify, the gate is self-reversible and weakly conservative. More-
over it is universal, as it can realize all the operators listed in Table IV. Observe
that the MV-algebras truncated sum (⊕) and the Goguen implication (→�, with
p > 3) are not realized.

4. QUANTUM REALIZATION OF THE GATES

In this section we describe a mathematical formalism which can be used to
realize a quantum version of the gates proposed in the previous section.
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Table IV. The Operators Realized by the Gate ALNd

Connective Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 0, x3 = 1 y2, y3 y1

Pr1 x1, x2 x3 = 1 y2 y1, y3

Pr2 x1, x2 x3 = 0 y2 y1, y3

→L x1, x2 x3 = 1 y1 y2, y3

→G x2, x3 x1 = 1 y3 y1, y2

∨ x1, x2 x3 = 1 y3 y1, y2

∧ x2, x3 x1 = 0 y3 y1, y2

� x1, x3 x2 = 0 y2 y1, y3

I x2 x1 = 0, x3 = 0 y2 y1, y3

¬ x1 x2 = 0, x3 = 1 y1 y2, y3

∼ x2 x1 = 1, x3 = 0 y3 y1, y2

� x3 x1 = 0, x2 = 1 y2 y1, y3

♦ x2 x1 = 1, x3 = 0 y1 y2, y3

� x3 x1 = 0, x2 = 1 y1 y2, y3

A quantum gate acts on memory cells that are d-level quantum systems called
qudits (see Cattaneo et al. (2000b) and Gottesman (1999)). A qudit is typically
implemented using the energy levels of an atom, a nuclear spin or a polarization
photon. The mathematical description—independent of the practical realization—
of a single qudit is based on the d-dimensional complex Hilbert space C

d . The
truth values of Ld are represented in this framework by the unit vectors of the
canonical orthonormal basis, called the computational basis of C

d :

|0〉 =




1

0
...

0

0




,

∣∣∣∣ 1

d − 1

〉
=




0

1
...

0

0




, · · · ,

∣∣∣∣d − 2

d − 1

〉
=




0

0
...

1

0




, |1〉 =




0

0
...

0

1




A quantum register of size n is mathematically described by the Hilbert
space ⊗n

C
d = C

d ⊗ · · · ⊗ C
d︸ ︷︷ ︸

n-times
representing a set of n qudits labeled by the in-

dex i = 1, . . . , n. An n-configuration (quantum realization of a classical sequence
of length n) is a vector |x1〉 ⊗ · · · ⊗ |xn〉, simply written as |x1, . . . , xn〉, where
each xi runs on the set Ld of classical truth values. Let us recall that the dimen-
sion of ⊗n

C
d is dn and the collection of all n-configurations {|x1, . . . , xn〉 : xi ∈

Ld} is an orthonormal basis of this space, called the n-register computational
basis.
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Unlike the situation of the classical wired computer where voltages of a wire
go over voltages of another, in quantum realizations of classical gates something
different happens. In this setting every gate of this kind must have the same num-
ber of input and output lines (that is, it must be an (n, d)-gate) and so its quan-
tum realization is a linear operator G : ⊗n

C
d �→ ⊗n

C
d which transforms vectors

|x1, . . . , xn〉 of the n-register computational basis into vectors G(|x1, . . . , xn〉) =
|x ′

1, . . . , x ′
n〉 of the same basis. Let us stress that G modifies the state |xi 〉 of each

qudit of the register into a new state |x ′
i 〉 of the same qudit, and that we interpret

such modifications as the computation made by the corresponding gate. The ac-
tion of G on a non-factorized vector � = ∑

αi1...in |xi1 , . . . , xin 〉, expressed as a
linear combination of the vectors of the n-register basis, is obtained by linearity:
G(�) = ∑

αi1...in G(|xi1 , . . . , xin 〉).
Here we are interested into the quantum realization of classical gates; of

course there exist also genuine quantum gates, characterized by the fact that
some input configurations are transformed into non-trivial superpositions of the
vectors of the computational basis. Two examples of such gates are the

√
NOT

gate, acting on configurations of a single qubit, and the Hadamard gate, acting
on quantum registers of size 2. In this paper we do not consider this kind of
gates.

The collection of all linear operators on C
d is a d2-dimensional linear space

whose canonical basis is:

{Ex ,x ′ = |x ′〉〈x | : x , x ′ ∈ Ld}
Since Ex ,x ′ |x〉 = |x ′〉 and Ex ,x ′ |y〉 = 0 for every y ∈ Ld such that y �= x , this
operator transforms the unit vector |x〉 into the unit vector |x ′〉, collapsing all the
other vectors of the canonical orthonormal basis of C

d into the null vector. The
case x = x ′ corresponds to the orthogonal projection Px = Ex ,x = |x〉〈x | which
leaves unchanged |x〉 collapsing into the null vector all the |y〉 with y ∈ Ld and
y �= x . For i, j ∈ {0, 1, . . . , d − 1}, the operator E i

d−1 , j
d−1

can be represented as
an order d square matrix having 1 in position ( j + 1, i + 1) and 0 in every other
position:

E i
d−1 , j

d−1
= (δr, j+1δi+1,s)r,s=1,2,...,d

A quantum realization of classical (n, d)-gates can be obtained as sums of
tensor products of the operators Ex ,x ′ . For example, let us consider the following
“brute force” approach. Let x1x2 · · · xn �→ y1 y2 · · · yn be a generic row of the
truth table of an (n, d)-gate. For what we have said above, the operator Ex1, y1 ⊗
Ex2, y2 ⊗ · · · ⊗ Exn , yn transforms the input configuration x1x2 · · · xn into the output
configuration y1 y2 · · · yn , and collapses all the other input configurations of the
n-register basis to the null vector. It is not difficult to see that if U0, . . . , Udn−1 are
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the “local” operators associated to the dn rows of the truth table, then the operator
U = ∑dn−1

i=0 Ui is a quantum realization of the (n, d)-gate.
Unfortunately, the formal expressions obtained with the above brute force

method are very long, independently of the (n, d)-gate considered. If the gate has
a particular structure, we can do better. For example, in Barenco et al. (1995)
(n, 2)-gates are considered whose first input line is a control line that determines
the action of the gate on the remaining input lines. This approach has been ex-
tended in Cattaneo et al. (2000b) to the case where an (n, d)-gate can be divided
into a k-inputs/k-outputs control unit and an (n − k)-inputs/(n − k)-outputs tar-
get (also operating) unit. Thus any input configuration |x1, . . . , xk , xk+1, . . . , xn〉
can be splitted into a control configuration |x1, . . . , xk〉 and a target configuration
|xk+1, . . . , xn〉. The control configuration is returned unchanged on the k output
lines of the control unit; as a side effect, it selects one of the dk (non necessarily
unitary) operators U0, U1, . . . , Udk−1, defined on the Hilbert space ⊗n−k

C
2, stored

into the gate. The selected operator is applied to the target configuration in order
to produce the output values of the target unit. The global operator that describes
the behavior of the (n, d)-gate has now the form:

P0 ⊗ U0 + P1 ⊗ U1 + · · · + P2k−1 ⊗ U2k−1 =
2k−1∑
X=0

PX ⊗ UX

where PX = EX, X is the orthogonal projection of the Hilbert space ⊗k
C

2 which
selects the X -th control configuration, and collapses to the null vector all the other
configurations. If many of the operators Ui are identical, this expression is much
shorter than the one obtained with the brute force method.

It is clear that the method derived from Conditional Quantum Control does
not describe every possible operator, since there are gates which cannot be divided
as a control unit and an operating unit. As a consequence, in Cattaneo et al.
(2000b) we proposed a general method that in some cases allows one to shorten
considerably the length of the expression of the unitary operator that constitute
a quantum implementation the gate. Basically speaking, our Constants Method
works as follows. Let us suppose that we want to give an (n, d)-gate which realizes
some set C of connectives. These connectives are realized by fixing some input
lines of the gate with constant values from Ld ; if we appropriately choose these
input lines and constant values, then we can minimize the number of input/output
pairs for which the gate behaves differently from the identity gate. This means that
we get a short expression by writing the operator associated to the gate in the form
I + T , where T is a linear operator which takes into account the cases where the
gate behaves differently from the identity gate.

Whatever is the method used to express the linear operator associated to the
(n, d)-gate, the resulting expression is a sum of tensor products of some operators
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Ex , y . Each of these operators can be expressed, using the whole algebraic structure
of the associative algebra of operators, as a suitable composition of creation and
annihilation operators or, alternatively, as a suitable composition of spin-creation
and spin-annihilation operators. We recall that the action of the creation operator
a† and of the annihilation operator a on the vectors of the canonical orthonormal
basis of C

d is, respectively:

a†
∣∣∣∣ k

d − 1

〉
= √

k + 1

∣∣∣∣ k + 1

d − 1

〉
for k = 0, 1, . . . , d − 2

a†|1〉 = 0

and

a

∣∣∣∣ k

d − 1

〉
=

√
k

∣∣∣∣ k − 1

d − 1

〉
for k = 1, 2, . . . , d − 1

a|0〉 = 0

The action of the spin-creation operator J+ and of the spin-annihilation operator
J− on the same vectors is:

J−

∣∣∣∣ k

d − 1

〉
=

√
(k + 1)(d − (k + 1))

∣∣∣∣ k + 1

d − 1

〉
for k = 0, 1, . . . , d − 2

J−|1〉 = 0

and

J+

∣∣∣∣ k

d − 1

〉
=

√
k(d − k)

∣∣∣∣ k − 1

d − 1

〉
for k = 1, 2, . . . , d − 1

J+|0〉 = 0

Thus, let Ap,q,r
u,v denote the expression

v · · · v︸ ︷︷ ︸
r

v∗ · · · v∗︸ ︷︷ ︸
q

v · · · v︸ ︷︷ ︸
p

u (4.1)

where u, v ∈ {a†, a}, v∗ is the adjoint of v , and p, q, r are non negative integer
values. For i, j ∈ {0, 1, . . . , d − 1}, we can express the operator E i

d−1 , j
d−1

in terms
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of creation and annihilation operators as follows:

E i
d−1 , j

d−1
=




√
j!

(d − 1)!
Ad−2,d−1− j,0

a†,a† if i = 0
√

j!

(d − 1)!
Ad−1,d−1− j,0

a,a† if i = 1 and j ≥ 1
√

i!

(d − 1)!
√

j!
Ad−2−i,d−1, j

a†,a† if (i = 1, j = 0 and d ≥ 3)

or (1 < i < d − 2 and j ≤ i)√
j!

(d − 1)!
√

i!
Ai−1,d−1,d−1− j

a,a if(i = d − 2, j = d − 1 and d ≥ 3)

or (1 < i < d − 2 and j > i)
1√

(d − 1)! j!(d − 1)
Ad−1, j,0

a†,a if i = d − 2 and j ≤ d − 2

1√
(d − 1)! j!

Ad−2, j,0
a,a if i = d − 1

Alternatively, we can express the operators E i
d−1 , j

d−1
in terms of spin-creation and

spin-annihilation operators. Let us consider the formal expression (4.1) applied to
u, v ∈ {J+, J−}; moreover, let

cr,s =

s∏
k=r

√
k(d − k)

d−1∏
k=1

k(d − k)

Then it holds,

E i
d−1 , j

d−1
=




c1, j Ad−2,d−1− j,0
J−, J− if i = 0

c2, j Ad−1,d−1− j,0
J+, J− if i = 1 and j ≥ 1

c j+1,i Ad−2−i,d−1, j
J−, J− if (i = 1, j = 0 and d ≥ 3)

or (1 < i < d − 2 and j ≤ i)

ci+1, j Ai−1,d−1,d−1− j
J+, J+ if (i = d − 2, j = d − 1 and d ≥ 3)

or (1 < i < d − 2 and j > i)

c2,d−1− j Ad−1, j,0
J−, J+ if i = d − 2 and j ≤ d − 2

c1,d−1− j Ad−2, j,0
J+, J+ if i = d − 1
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5. CONCLUSIONS

We have defined some conservative gates for finite-valued logics, which are
able to realize all the main connectives of the many-valued logics of L� ukasiewicz,
the MV-algebras of Chang and Brower–Zadeh algebras. In particular, the gate
CON3 was a strictly conservative gate for three-valued logics, while the gate
wCONd was a weakly conservative gate for d-valued logics. Moreover, we have
proposed a strictly conservative (3, 2)-gate which is (in our opinion) a valid alter-
native to the Petri–Fredkin gate as a foundation for conservative logic. A d-valued
extension of such gate, ALNd , allows one to seize all the desired connectives, with
some minor exceptions.

A mathematical framework that allows one to give quantum realizations of
the gates has been introduced, and the possibility to realize our gates with three
techniques (the so-called “brute force” method, the Conditional Quantum Control
and our Constants Method) has been exposed.

One of the purposes of our work was to show that the framework of reversible
and conservative computation can be extended toward some non classical “rea-
soning environments”, originally proposed to deal with propositions which embed
imprecise and uncertain information, that are usually based on many-valued and
modal logics.

APPENDIX

In this section we give an example of the application of the technique derived
from Conditional Quantum Control, and of our Constants Method, to express the
unitary operators that constitute a quantum realization of some (n, d)-gates. The
formal expression of the unitary operator associated to the gate wCONd has been
obtained through the application of the Conditional Quantum Control technique,
while the expression for the unitary operator that implements ALNd results from
the application of our Constants Method. Observe how the latter formula is sig-
nificantly shorter than the former; this is due to the fact that the gates wCONd and
ALNd have been conceived with the Constants Method in mind.

Realization of wCONd with the Conditional Quantum Control Technique

P0 ⊗
(

P0 ⊗ Id ⊗ Id + P 1
d−1

⊗
(

d−3∑
j=0

E j
d−1 , j+1

d−1
⊗ E1, d−2

d−1
+ P0 ⊗

d−2∑
j=0

P j
d−1

+
d−2∑
j=1

(
E j

d−1 , j−1
d−1

⊗ E d−2
d−1 ,1 + P j

d−1
⊗

d−3∑
k=0

P k
d−1

)
+E d−2

d−1 ,1 ⊗ E1, d−2
d−1
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+ P1 ⊗
d−3∑
j=0

P j
d−1

+ E1, d−2
d−1

⊗ E d−2
d−1 ,1 + P1 ⊗ P1

)

+
d−2∑
i=2

P i
d−1

⊗
(

d−2∑
j=d−i

E0, i+ j
d−1 −1 ⊗ E j

d−1 ,1− i
d−1

+ P0 ⊗
d−1−i∑

j=0

P j
d−1

+
d−2−i∑

j=0

E j
d−1 , i+ j

d−1
⊗ E1,1− i

d−1
+

d−2∑
j=1

P j
d−1

⊗
d−2∑
k=0

k �=d−1−i

P k
d−1

+
d−2∑

j=d−1−i

(
E j

d−1 ,1 ⊗ E1, j
d−1

+ E1, j
d−1

⊗ E j
d−1 ,1

)

+
i−1∑
j=1

E j
d−1 ,0 ⊗ E1− i

d−1 ,1+ j−i
d−1

+
d−2∑
j=i

E j
d−1 , j−i

d−1
⊗ E1− i

d−1 ,1

+ P1 ⊗
d−2−i∑

j=0

P j
d−1

+ P1 ⊗ P1

)

+ P1 ⊗
(

P0 ⊗ P0 +
d−2∑
j=0

(
E j

d−1 ,1 ⊗ E1, j
d−1

+ E1, j
d−1

⊗ E j
d−1 ,1

)

+
d−2∑
j=1

(
E0, j

d−1
⊗ E j

d−1 ,0 + E j
d−1 ,0 ⊗ E0, j

d−1

)

+
d−2∑
j=1

P j
d−1

⊗
d−2∑
k=1

P k
d−1

+ P1 ⊗ P1

))

+ P1
2
⊗

(
P0 ⊗ Id ⊗ Id

+
d−1∑
i=1

P i
d−1

⊗
(

i−1∑
j=0

E1, j
i
⊗ E j

d−1 ,1− j
d−1 − j

i
+ P1 ⊗

d−1∑
j=i

P j
d−1

+
d−2∑
j=0

(
E j

d−1 ,1 ⊗ E1− j
d−1 (1− i

d−1 ), i
d−1

j
d−1

+ P j
d−1

⊗
d−1∑
k=0

k �=d−1− j

(
1− i

d−1

) P
1− k

d−1

(
1− k

d−1

))))



Quantum Conservative 1789

+
d−2∑
i=1

i �= i
d−1

P i
d−1

⊗ Id ⊗ Id ⊗ Id

+ P1 ⊗
(

P0 ⊗
d−1∑
i=0

d−1∑
j=0

E i
d−1 , j

d−1
⊗ E j

d−1 , i
d−1

+
d−3∑
i=1

P i
d−1

⊗
(

d−2∑
j=i

(
E1, j

d−1
⊗ E j

d−1 ,1 + E j
d−1 ,1 ⊗ E1, j

d−1

)

+
i−1∑
j=0

(
E1, i

d−1
⊗ E j

d−1 ,1+ j−i
d−1

+ P j
d−1

⊗ Id

)

+
d−2∑

j=i+1

(
E j

d−1 , i
d−1

⊗ E0, j−i
d−1

+ P j
d−1

⊗
d−2∑
k=1

P k
d−1

)

+
d−2∑

j=d−1−i

E i
d−1 ,1 ⊗ E j

d−1 , j+i
d−1 −1 +

d−2−i∑
j=1

E i
d−1 , j+i

d−1
⊗ E j

d−1 ,0

+ P i
d−1

⊗ P0 + P1 ⊗ P1

)

+ Pd−2
d−1

⊗
(

E1, d−2
d−1

⊗ E d−2
d−1 ,1 + E d−2

d−1 ,1 ⊗ E1, d−2
d−1

+
d−3∑
j=0

(
E1, d−2

d−1
⊗ E j

d−1 , j+1
d−1

+ P j
d−1

⊗ Id

)

+
d−2∑
j=1

E d−2
d−1 ,1 ⊗ E j

d−1 , j−1
d−1

+ Pd−2
d−1

⊗ P0 + P1 ⊗ P1

)

+ P1 ⊗ Id ⊗ Id

)

Realization of ALNd with the Constants Method

d−2∑
i=0

d−1∑
j=i

(
E j

d−1 ,1− i+ j
d−1

⊗ E i
d−1 , j

d−1
⊗ E1, j

d−1
− P j

d−1
⊗ P i

d−1
⊗ P1

)
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+
d−1∑
i=0

d−1∑
j=d−1−i

(
E i

d−1 ,1− j
d−1

⊗ E j
d−1 , i+ j

d−1 −1 ⊗ E j
d−1 ,1 − P i

d−1
⊗ P j

d−1
⊗ P j

d−1

)

+
d−2∑
i=1

i−1∑
j=0

(
E j

d−1 ,1 ⊗ E i
d−1 , j

d−1
⊗ E1, i

d−1
− P j

d−1
⊗ P i

d−1
⊗ P1

)

+
d−2∑
i=1

i−1∑
j=0

(
E1, j

d−1
⊗ E j

d−1 , i
d−1

⊗ E i
d−1 ,1 − P1 ⊗ P j

d−1
⊗ P i

d−1

)

+
d−2∑
i=1

i−1∑
j=0

(
E0, i− j

d−1
⊗ E j

d−1 , j
d−1

⊗ E i
d−1 , j

d−1
− P0 ⊗ P j

d−1
⊗ P i

d−1

)

+
d−2∑
i=1

d−2−i∑
j=0

(
E i

d−1 ,0 ⊗ E j
d−1 , j

d−1
⊗ E j

d−1 , i+ j
d−1

− P i
d−1

⊗ P j
d−1

⊗ E j
d−1

)

+
d−2∑
i=2

d−2∑
j=d−i

(
E i

d−1 ,1− i
d−1

⊗ E0, i+ j
d−1 −1 ⊗ E j

d−1 , i
d−1

− P i
d−1

⊗ P0 ⊗ P j
d−1

)

+
d−2∑
i=2

i−1∑
j=1

(
E1− i

d−1 , i
d−1

⊗ E j
d−1 ,0 ⊗ E i

d−1 ,1− i+ j
d−1

− P1− i
d−1

⊗ P j
d−1

⊗ P i
d−1

)
+ Id ⊗ Id ⊗ Id
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